Project Jupyter: Computational Narratives as
the Engine of Collaborative Data Science

Note: this is the full text of the grant proposal that was funded by the Helmsley Trust, the
Gordon and Betty Moore Foundation and the Alfred P. Sloan Foundation on April 2015, as
described on these two announcements from UC Berkeley and Cal Poly, and press releases
from the Helmsley Trust and the Moore Foundation. A PDF version of this document can
be found here.

Fernando Perez Brian E. Granger
Lawrence Berkeley National Lab & Cal Poly San Luis Obispo
UC Berkeley

Statement of the problem and audience

Computers are good at consuming, producing and processing data. Humans, on the
other hand, process the world through narratives. Thus, in order for data, and the
computations that process and visualize that data, to be useful for humans, they must
be embedded into a narrative - a computational narrative - that tells a story for a
particular audience and context. There are three fundamental aspects of these
computational narratives that frame the problem we seek to address.

First, a single computational narrative needs to span a wide range of contexts
and audiences. For example, a biomedical researcher might originally perform
statistical analyses and visualizations for a highly technical paper to be published in an
academic journal. Over time, however, that same individual will give talks to other
researchers, or even non-technical audiences. Eventually, it may even be important to
enable non-coding lab scientists to perform that same statistical analyses and
visualizations on data from new samples using a simplified graphical user interface.
Across all of these different audiences and contexts, core aspects of the computational
narrative remain invariant.

Second, these computational narratives need to be reproducible. That is, other
people - including the same scientist six months later - need to be able to understand
exactly what was done (code, data and narrative) and be able to reliably reproduce the
work in order to build new ideas off it. Reproducibility has long been one of the
foundations of the scientific method, but the rise of data science brings new challenges
to scientific reproducibility, while simultaneously extending these questions to other
domains like policy making, government or journalism.

http://archive.ipython.org/JupyterGrantNarrative-2015.pdf
https://www.moore.org/newsroom/press-releases/2015/07/07/$6m-for-uc-berkeley-and-cal-poly-to-expand-and-enhance-open-source-software-for-scientific-computing-and-data-science
http://news.berkeley.edu/2015/07/07/jupyter-project
http://helmsleytrust.org/news/uc-berkeley-and-cal-poly-expand-and-enhance-open-source-software-scientific-computing-and-data
http://www.calpolynews.calpoly.edu/news_releases/2015/July/jupyter.html
http://archive.ipython.org/JupyterGrantNarrative-2015.pdf

Third, computational narratives are created in collaboration. Multiple
individuals need the ability to work together at the same time, on the code, data and
narrative. Collaboration is present in nearly all contexts where computational
narratives are created: between two postdocs and a professor in the same research
group; between the writers, editors and visual designers of an online news site;
between the data scientists and business strategists at a large internet company; or
between a teacher and students in a university classroom.

Given this background, the core problem we are trying to solve is the
collaborative creation of reproducible computational narratives that can be used across a
wide range of audiences and contexts. We propose to accomplish this through Project
Jupyter (formerly IPython), a set of open-source software tools for interactive and
exploratory computing. These software projects support scientific computing and data
science across a wide range of programming languages (Python, Julia, R, etc.) and
already provide basic reproducibility and collaboration features. This grant aims at
making major progress atop this foundation. The main application offered by Project
Jupyter is the Jupyter Notebook, a web-based interactive computing platform that
allows users to author computational narratives that combine live code, equations,
narrative text, interactive user interfaces and other rich media. These documents
provide a complete record of a computation that can be converted to a number of
formats (HTML, PDF, etc.) and shared with others through email, Dropbox, GitHub, etc.
They can also be published online thanks to our Jupyter Notebook Viewer, a free service
we operate that allows anyone on the web to view a notebook as a regular web page.

Related work and collaborations

In this section, we describe related work in two areas: interactive computing and online
collaboration software. After that, we detail the various organizations with which we
have significant collaborations.

There are a number of interactive computing environments that have
similarities to our work with Project Jupyter. The largest group of products, by number
of users, are the traditional commercial interactive computing environments: Matlabl,
Mathematicaz, SASS, SPSS% and Microsoft Excel. While these products are extremely
popular, their proprietary nature and expensive licensing fees make them unattractive
for open and reproducible scientific research and data science.

L Matlab, MathWorks, 2014 <http://www.mathworks.com/products/matlab>

2 Mathematica, Wolfram, 2014 <http://www.wolfram.com/mathematica>
SAS, 2014 <http://www.sas.com>

4 SPSS, IBM, 2014 <http://www-01.ibm.com/software/analytics/spss>

http://www-01.ibm.com/software/analytics/spss
http://www.mathworks.com/products/matlab
http://www.wolfram.com/mathematica
http://www.sas.com/

On the open source side, there are the popular Sage5 and RStudio® projects and
the newer Spyder IDE’, Beaker Notebook® , Zeppelin Projectg, SageMathCloud10 and
Wakaril 1(Wakari is a proprietary project based on open-source tools). A number of
these projects (Sage, Spyder, Beaker, SageMathCloud and Wakari) rely on and provide
integration with the Jupyter/IPython architecture.

In the area of online collaboration software, there are two gold standards. First,
Google Drivel? has, quite literally, invented modern online collaboration by offering a
productive environment that allows multiple, distributed users to simultaneously edit
documents, spreadsheets, and slide presentations. For many organizations, these
real-time collaboration capabilities of Google Drive have transformed how distributed
teams get work done together. Second, for code and data, git13 and GitHub!4 have
played a similar transformative role in distributed collaboration. The git project is an
open source distributed version control system that programmers use to track and
share changes in complex software. GitHub is a commercial (but free for public usage)
collaboration platform built around git that has become invaluable for companies, open
source projects and scientists alike. SageMathCloud and Wakari expose the Jupyter
Notebook online and provide some collaboration features. While there are other online
code and document collaboration platforms (Bitbucket, Office 365, Hackpad, Etherpad,
etc.) all of these are largely inspired by Google Drive and git/GitHub.

Over the past few years, we have spent significant amounts of time and effort
investing in relationships with other individuals and organizations that have
overlapping missions, impact areas, user groups and technologies as Project Jupyter. In
the area of academic research and education, we have ongoing collaborations with
individuals and departments at Stanford, UW, NYU, MIT, Harvard, Bryn Mawr, U.
Southampton, U. Sheffield and Simula Research Lab (Norway). In the area of open
science, we coordinate efforts with the Center for Open Science (Brian Nosek and Jeff
Spies) and Software Carpentry (Greg Wilson). In traditional journalism, we have
relationships with staff at 538, BuzzFeed and the New York Times focused around
data-driven journalism. In open source software, we collaborate closely with the core
developers of all the major scientific computing and data science projects in Python

5

6 Sage Math Project, 2014 <http://www.sagemath.org>

RStudio, 2014 <http:/www.rstudio.com>

Spyder IDE, 2014 <https://code.google.com/p/spyderlib>

8 Beaker Notebook, 2014 <http://beakernotebook.com>

9 Zeppelin Project, 2014 <http://zeppelin-project.org>

10 Account - SageMathCloud." 2013. 30 Jan. 2015 <https://cloud.sagemath.com/>

11 vwakari - Web-based Python Data Analysis." 2012. 30 Jan. 2015 <https://wakari.io/>
12 Google Drive, Google, 2014 <https://www.google.com/drive>

13 The git Project, 2014 <http://git-scm.com>

14 GitHub, 2014 <https://github.com>

http://zeppelin-project.org/
http://www.sagemath.org/
https://github.com/
https://code.google.com/p/spyderlib
http://www.rstudio.com/
https://cloud.sagemath.com/
http://git-scm.com/
https://www.google.com/drive
http://beakernotebook.com/
https://wakari.io/

(NumPy, SciPy, Pandas, Matplotlib, Scikit-Learn, etc.), Julia (core developers) and R
(rOpenSci).

We also work closely with a number of companies that are building products
based on the Jupyter Notebook, contribute code and financial resources to the project
and serve as advisors on a wide range of technical and strategic topics. Because these
collaborations are so important for the ongoing sustainability of Project Jupyter, we
wish to highlight a few of these.

GitHub is an online collaboration and hosting site for software projects and
code. For us, GitHub is significant because many users of the Jupyter Notebook host
and share their computational narratives, as Jupyter Notebook documents, on GitHub.
Our own Notebook Viewer service renders notebooks stored on GitHub as static HTML
pages, which can be shared with anyone in the world without their installing anything.
We are currently working with Arfon Smith and Tim Clem of GitHub to explore other
integration points between GitHub and Project Jupyter.

Rackspace is a commercial cloud hosting company that supports a wide range of
open source projects, including Project Jupyter. For the last year, Rackspace has
provided significant hosting resources for our popular Notebook Viewer service. This
includes one of Rackspace’s engineers, Kyle Kelley, building and maintaining this
deployment and making significant contributions to the Jupyter codebase. In the
summer of 2014, Kyle, with Rackspace’s explicit support, began a much more ambitious
effort to offer cloud-hosted Jupyter Notebooks where users could instantly try a live
Jupyter Notebook to run Python, R and Julia code. Thanks to this work, we were able to
embed a live demo of the Jupyter Notebook in an article about the project that was
published in November of 2014 in Nature!.

Microsoft has been collaborating with the PIs of this grant since 2008, when Dr.
Brian Granger added support for Microsoft’s job scheduler to IPython’s parallel
computing framework. Since then, Microsoft has added IPython integration to the
popular Python Tools for Visual Studio, demonstrated the Jupyter Notebook running in
the Microsoft cloud (Azure) and donated $100,000 to the project through NumFOCUS.
We are currently working closely with Microsoft to identify future areas of
collaboration.

Bloomberg is one of the largest financial data and news companies in the world.
Two individuals at Bloomberg (Jason Grout and Sylvain Corlay) have been approved to
contribute to Project Jupyter in an official capacity. Both are regular contributors and
have been critical in the design of the project’s interactive widget architecture. This
collaboration has led to our working with Chris Colbert and others at Bloomberg to
begin designing the next generation of web-based user interfaces. We will use the

15 "[Python interactive demo : Nature News & Comment." 2014. 30 Jan. 2015
<http://www.nature.com/news/ipython-interactive-demo-7.21492>

http://www.nature.com/news/ipython-interactive-demo-7.21492

open-source phosphor.js JavaScript library developed at Bloomberg, needed for this
grant’s deliverables. Bloomberg also has an official open source program and policies,
including hosting of “Open Source Days” at their headquarters in NYC and London.

Google approached us in 2014 regarding a prototype of a project, called
coLaboratory, that integrates the Jupyter Notebook into Google Drive. Most
importantly, this prototype demonstrated that building real-time collaboration into the
Jupyter Notebook would be possible. However, this prototype also revealed the
incredible technical challenges of doing so. In late 2014, Google donated $100,000 to
Fernando Perez at UC Berkeley to hire a postdoc (Matthias Bussonnier) that would
begin to extract the Google Drive integration from coLaboratory into Project Jupyter
itself. We want to emphasize two aspects of this collaboration. First, the technical
challenges in building real-time collaboration into the Jupyter Notebook are so
significant that we could not do this without close collaboration with Google. Second,
the effort required to implement this in Project Jupyter requires resources that extend
far beyond those provided to us by Google.

O’Reilly Media is a major publisher of technology focused books and online
content as well as the organizer of the most significant conferences in the data science
and open source spaces (Strata, Hadoop World, OSCON, etc.). In 2014, we began
working with the CTO of O’Reilly, Andrew Odewahn, to explore ways of integrating the
Jupyter architecture into their publishing platform, to enable both authors and readers
of O’Reilly content to experience books as live, computational entities. O’Reilly already
has multiple books that include code examples as Jupyter Notebooks.

Organizational background

Mission and Background

Project Jupyter’s mission is to create open source tools for interactive scientific
computing and data science in research, education and industry, with an emphasis on
usability, collaboration and reproducibility.

Today’s Jupyter evolved from the IPython project, created in 2001 as an
interactive Python shell by Dr. Fernando Perez. Dr. Brian Granger joined the IPython
project in 2004, and the two of us have led the project since then. The core
development team has grown to roughly a dozen active contributors and a “long tail” of
community contributors currently numbering over 400, who participate with various
degrees of regularity.

For the first decade, IPython focused strictly on scientific and interactive
computing in the Python language, providing a rich interactive shell well suited to the
workflow of everyday research, as well as tools for parallel computing. It was part of an

5

organic ecosystem of open-source projects for scientific computing in Python,
informally known as the “SciPy Stack”.

Around 2010, IPython evolved from providing only a terminal-based interactive
shell into a generic architecture for interactive computing and computational
narratives in any programming language. This design allowed us to build the
web-based Notebook described in this proposal. This expansion beyond Python led to a
renaming of all the non-Python specific parts to Project Jupyter. Today, this
architecture supports over 20 different programming languages, with most
implementations having been created by third-parties.

Core problems and constituency

While scientists have always used computers as a research tool, they use them
differently than industrial software engineers: in science, the computer is a kind of
“abstract microscope” that enables the scientist to peek into data and models that
represent or summarize the real world. Software engineers tend to write programs to
solve reasonably well-defined and independently specified problems, and their
deliverable is a software artifact: a standalone application, library or system.

While standalone software libraries exist in science (say the building of a library
to solve differential equations), we target a more common scenario: the iterative
exploration of a problem via computation and the interactive study of intermediate
results. In this kind of computational work, scientists evolve their codes iteratively,
executing small test programs or fragments and using the results of each iteration as
insight that informs the next step. The computations inform their understanding of
their scientific questions, and those questions shape the process of computing. The
nature of this process means that, for scientists, an interactive computing system is of
paramount importance: the ability to execute very small fragments of code (possibly a
single line) and immediately see the results is at the heart of their workflow.

Furthermore, the purpose of computation in science is precisely to advance
science itself. In the famous words of R. Hamming, “the purpose of computing is insight,
not numbers.” For this reason, computation in science is ultimately in service of a result
that needs to be woven into the bigger narrative of the questions under study: that
result will be part of a paper, will support or contest a theory, will advance our
understanding of a domain. And those insights are communicated in papers, books and
lectures: narratives of various formats.

The problem the Jupyter project tackles is precisely this intersection: creating
tools to support in the best possible ways the computational workflow of scientific
inquiry, and providing the environment to create the proper narrative around that
central act of computation. We refer to this as Literate Computing, in contrast to

Knuth’s concept of Literate Programming, where the emphasis is on narrating
algorithms and programs. In a Literate Computing environment, the author weaves
human language with live code and the results of the code, and it is the combination of
all that produces a computational narrative.

We consider this problem while acknowledging that science is, by definition, an
open, collaborative enterprise founded on the principle of independent validation of all
knowledge. This means that supporting collaboration and reproducibility are central
guiding principles of the project.

Finally, while all the above has been cast in the context of scientific research, the
rise of ubiquitous data science means that these same questions are now not only the
purview of physicists or biologists. Today policy makers, journalists, business analysts,
financial model builders, all work with the same tools and challenges: their data may
come from a population census or the stock market, and instead of an academic paper
they may be writing a blog post or a sales report for a client, but ultimately the process
is similar. They need to extract insight from data using computational tools, and they
need to communicate that insight to an audience in the form of a narrative that
resonates with that audience.

So today, Project Jupyter serves not only the academic and scientific
communities, but also a much broader constituency of data scientists in research,
education, industry and journalism. Given the importance of computing across modern
society, we see uses of our tools that range from high school education in programming
to the nation’s supercomputing facilities and the leaders of the tech industry
mentioned above.

Basically, anyone who needs to execute code an interactive programming
environment can be legitimately considered as served by our project. As computation
and data analysis become pervasively woven into the fabric of society, our constituency
continues to broaden. The challenge for our organization is to maintain a focused
research agenda where we provide a coherent vision of the future in interactive
computation, a clean set of abstractions and tools, and a sustainable community model.
These things, combined, should serve as the foundation on which others can then build
the solutions they need in their specific contexts. The purpose of this proposal is to
advance the state of the art in those core questions.

Project organization

Project Jupyter is organized around an open-source model that allows for individual
Contributors to join the effort based on their personal interest, resources and
availability. Along side this open community of Contributors, the project has a thin

layer of formal organizational structure and governance. A summary of that structure

and governance follows

16.

A large, public, open and inclusive community of Contributors participate in the
creation of Project Jupyter’s software. Some contribute code, others
documentation, ideas or bug fixes. Nearly all technical decisions are made
through the informal consensus of this open community.

Through a record of sustained activity, Contributors can be nominated to have
more rights and responsibilities in the development of specific parts of the
project. This is done by providing them with write privileges (known as “commit
rights”) in the code repositories of the organization, hosted on GitHub. We
currently have roughly 20 people in this capacity.

Contributors who demonstrate significant leadership and contributions for
longer than 1 year can be nominated to the Jupyter Steering Committee. The
Steering Committee is the formal governing body for the project and is ultimately
responsible its the technical, strategic and communal health. We emphasize,
however, that the Steering Committee delegates essentially all technical decisions
to the open community.

From a legal perspective, Project Jupyter is part of the NumFOCUS Foundation, a
501(c)3 organization dedicated to support research, development and education
in open source scientific computing and data science. NumFOCUS provides legal
structure and fiscal sponsorship for small amounts of community-focused
project funds.

The project also has Institutional Partners: companies, universities and other
legal entities who have at least one employee on the Steering Committee. By
raising money (donations, grants, for-profit business models) and employing
project Contributors and Steering Committee members these Institutional Partners
are the main source of financial support for the project.

We emphasize, however, that Contributor or Steering Committee status is always
based on the technical participation of individuals, rather than the financial
weight of the Institutional Partners; it is impossible to “buy your way” onto the
Steering Committee. The current Institutional Partners are UC Berkeley, Cal Poly,
Rackspace and Continuum Analytics.

The PIs on this grant are project Contributors, Steering Council members and
employees of the UC Berkeley (Fernando Perez) and Cal Poly (Brian Granger)
Institutional Partners. Through their seniority and long time (14 and 10 years

https:

16 our detailed governance policies are publicly available here:
github.com/ipython/ipython/wiki/IPEP-29:-Project-Governance.

https://github.com/ipython/ipython/wiki/IPEP-29:-Project-Governance

respectively) commitment, leadership and contributions, they effectively lead
the Steering Council and project.

Project Jupyter deliberately has no full time employees through NumFOCUS; all
full time staff positions are handled through Institutional Partners. UC Berkeley
currently has 1 full time software engineer and two postdocs (in addition to F.
Perez). Cal Poly currently has one full time software engineer, who is currently
paid as an independent contractor through funds from Microsoft/NumFOCUS (in
addition to B. Granger). Other Steering Council members are employed by
Rackspace (Kyle Kelley) and Continuum Analytics (Damian Avila).

Project activities and highlights

The main project activities, supported by a combination of open source volunteers,
funded researchers and industry partners, are:

The creation of open source software, hosted on the Github site under the
ipython and jupyter organizations. We currently host 46 public repositories.
Hosting online services powered by our software, currently supported by
Rackspace:

o The Notebook Viewer (http://nbviewer.ipython.org): renders the URL of
any notebook as a static web page, enabling effortless sharing of
notebooks. This service gets currently ~ 800,000 page views per month,
from ~ 200,000 visitors.

o TryJupyter/tmpnb (http://try.jupyter.org): an ephemeral, anonymous live
Jupyter Notebook. This lets anyone log into a Notebook server and
experiment with the provided example notebooks or type their own code.

o A live demo for the Nature Journal: since November 2014, as a companion
for an article about IPython published by Nature, we have hosted an
instance of the ephemeral notebook service that lives in the Nature.com
domain. This has served over 20,000 live sessions and broke readership
records for simultaneous users on the Nature site.

A public chat room (https://gitter.im/ipython/ipython/help) where our project
developers help members of the public with general questions.

A public mailing list where more long-form discussions take place.

Weekly development meetings publicly broadcast via Google+ Hangouts and
archived on YouTube. This improves our community engagement and the
transparency of our process. Multiple other open source projects have adopted
this model since we introduced it in 2013.

https://gitter.im/ipython/ipython/help
http://try.jupyter.org/
http://nbviewer.ipython.org/

Estimated user base. It is very hard to get accurate user counts for an open
source project that can be downloaded freely from multiple sources. But we estimate at
least 2 million users for IPython. This is a rough number, but if anything, a conservative
undercount. We justify this number as follows:

e Estimates of Linux users (not datacenter servers) range from 20M for Ubuntu to
~70M across Linux Distributions!7.

e The Debian Linux distribution tracks package installations with the ‘popcon’
tool. This shows IPython to be regularly installed in ~ 5% of Debian systemsls.

e [fwe use Debian as a baseline, and estimate total Linux user counts at ~50M
(rough average of the above two numbers), we get about 2.5M installs of I[Python
on Linux.

e This doesn't count many other sources IPython can be installed from, such as
Github, Python’s package repository, the Continuum Anaconda distribution,
Enthought Canopy, etc. Nor does it count the increasing number of server-side
hosted deployments we see more and more of.

Other highlights. A few other relevant achievements of the project over the last
few years:

e Very large user base.

e Three books have been published devoted to IPython 192021 4pd several more
cover IPython in detail (one or more chapters). Two books have also been
written either entirely as Notebooks or containing extensive Notebook
collections?2 23 and we know several more are being written.

e Courses at top universities in the US and abroad use Jupyter Notebooks as core
educational technology. We know of over a dozen at UC Berkeley, Cal Poly, U.
Santa Clara, Harvard, Columbia, U. Claude Bernard Lyon (France), and more.

1T hitp:yy en.wikipedia.org/wiki/Ubuntu_(operating system)#Installed base
http://en.wikipedia.org/wiki/Linux_adoption#Measuring desktop_adoption

18 1 ttps://ga.debian.org/popcon.php?package=ipython
19 "Learning IPython for Interactive Computing and Data ..." 2014. 30 Jan. 2015

<https://www.packtpub.com/big-data-and-business-intelligence/learning-ipython-interactive-comput

insz-andz éiata—visualization>,
"IPython Notebook Essentials | Packt.” 2014. 30 Jan. 2015
<https:/~vww.packtpub.com/application-development/ipython-notebook-essentials>

21 Rossant, Cyrille. IPython Interactive Computing and Visualization Cookbook. Packt Publishing

Ltd, 2014,
22 "Python for Signal Processing - Featuring IPython Notebooks." 2013. 30 Jan. 2015
<http:/~ww.springer.com/engineering/signals/book/978-3-319-01341-1>

23 "Mining the Social Web, 2nd Edition - O'Reilly Media." 2013. 30 Jan. 2015
<http://shop.oreilly.com/product/0636920030195.do>

10

https://qa.debian.org/popcon.php?package=ipython
https://www.packtpub.com/big-data-and-business-intelligence/learning-ipython-interactive-computing-and-data-visualization
http://en.wikipedia.org/wiki/Linux_adoption#Measuring_desktop_adoption
https://www.packtpub.com/big-data-and-business-intelligence/learning-ipython-interactive-computing-and-data-visualization
http://shop.oreilly.com/product/0636920030195.do
https://www.packtpub.com/application-development/ipython-notebook-essentials
http://www.springer.com/engineering/signals/book/978-3-319-01341-1
http://en.wikipedia.org/wiki/Ubuntu_(operating_system)#Installed_base

e There have been 18 academic (peer-reviewed or preprints) articles 24 that
provide IPython Notebooks to support reproducibility.

e There are independent implementations of the Jupyter protocol that provide
kernels in over 25 different programming languages.

e Google Research created and released the CoLaboratory system for integration of
Notebooks with Google Drive as an app in the Chrome web store. This effort led
to a funded collaboration with our team.

e Professors Lorena Barba (George Washington U), Ian Hawke (U. Southampton)
and Carlos Jerez (U. Pontificia Catélica de Chile) taught in 2014 a MOOC on
numerical computing whose teaching materials consist entirely of IPython
Notebooks25.

There are many more teaching materials, conference talks, blog posts and projects
using our architecture and tools, that we can not fit in this space. We refer the reader to
the Notebook Gallery and list of Projects using IPython in our wiki for a comprehensive
list (https://github.com/ipython/ipython/wiki).

Approach and strategy

This project is structured in a “3+1” format, with three main focus areas of research and
development and one extra topic of ongoing work. The three focus areas are Interactive
Computing, Computational Narratives and Collaboration. The problem of Sustainability
will require ongoing attention but is conceptually distinct from the first three, as it
doesn’t focus on specific research questions or deliverables.

Interactive Computing

At the heart of the entire Jupyter architecture lies the idea of interactive computing:
humans executing small pieces of code in various programming languages, and
immediately seeing the results of their computation. Interactive computing is central
to data science because scientific problems benefit from an exploratory process where
the results of each computation inform the next step and guide the formation of
insights about the problem at hand. In this Interactive Computing focus area, we will
create new tools and abstractions that improve the reproducibility of interactive
computations and widen their usage in different contexts and audiences.

2405 gallery of interesting IPython Notebooks - ipython ... - GitHub." 2013. 30 Jan. 2015
<https://~ithub.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks>

25 "Practical Numerical Methods with Python | GW Open edX." 2014. 30 Jan. 2015
<http://openedx.seas.gwu.edu/courses/GW/MAE6286/2014 fall/about>

11

https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki
http://openedx.seas.gwu.edu/courses/GW/MAE6286/2014_fall/about

Notebooks as interactive applications

The Jupyter Notebook has an architecture for interactive widgets that bind data and
code in the backend (Python, Julia, R, etc.) to interactive user interfaces running in the
browser. This enables users to quickly explore code and data by manipulating user
interface controls (buttons, sliders, etc.). This architecture is being used to create
custom user interfaces in the notebook using powerful JavaScript libraries such as d3.js.
These widgets open the door for non-technical “consumers” of notebooks to explore
data in a notebook, without coding. We will extend the widget architecture into a
full-blown application framework.

First, we will enhance our widgets to handle more complex hierarchies of objects
with events, parent/child relationships, etc. Second, we will enable these widgets to be
deployed in contexts outside the traditional notebook, where a live computational
kernel is not running, such as nbviewer or a static HTML page. Third, we will create a
system that allows users to bundle, share and deploy sets of widgets as independent
“apps.” This will allow users and developers to leverage the notebook for highly
customized, but still data and code driven, user interfaces that can be used with
non-technical audiences.

Modular, reusable Ul/UX

The Notebook user interface (UI) is the main way that users interface with our project
on a daily basis. In order to create a more humane and productive environment for
users, we will invest significant effort on improving the Ul and user experience (UX).

First, we will create a more modular set of Ul components to enable users and
third party developers to build purpose specific Uls with custom components, such as
file browsers, debuggers, variable inspectors, documentation panes, etc. This work will
be done in collaboration with Bloomberg (see above for the details of this
collaboration). Second, by hiring a full time UIl/UX person, we will begin to perform
studies of the usability of our various Uls. This will include qualitative user testing and
quantitative A/B testing. Third, we will add a set of richer actions that can be performed
on single or multiple notebook documents. These include multicell operations
(cut/copy/paste), structural operations that allow different sections and subsections to
be collapsed/expanded and moved atomically, and an improved dashboard for working
with directories of files and notebooks.

Software engineering with notebooks

12

The Jupyter Notebook emerged out of a need to capture otherwise transient interactive
computations in a form that could be reproduced and shared with others. However, as
single notebooks grow in size and complexity, they become difficult to work with from
the software engineering perspective (testing, documentation, reuse, modularity, etc.).
In this grant we will improve the software engineering aspects of notebook based
workflows.

First, we will improve the ability of users to transition from a single large
notebook, to a smaller notebook that calls code contained in external modules that can
be tested and documented separately. Second, we will work to enable notebooks
themselves to be treated as importable Python packages. This will enable code in one
notebook to be used in other notebooks or projects more easily. Third, we will build
tools that allow notebooks to be tested in similar ways as traditional software projects
are. Fourth, we will build tools that can verify that a notebook is reproducible; that it
gives the same results when run again. This verification will be performed by rerunning
the original notebook, comparing the output of the rerun notebook with that of the
original, and then creating a human readable “reproducibility report” that summarizes
the differences, if any. This will also enable us to develop quantitative metrics that
measure the degree of reproducibility.

Capstone

As a capstone to the Interactive Computing focus area, we will create a prototype of a
spreadsheet app/widget that is integrated with the notebook architecture. This
prototype will validate our improvements to widgets, our UIl/UX modularization work
and our work towards “application” oriented usages of our architecture.

Computational Narratives

Jupyter Notebooks enable users to create and share code and data driven narratives.
These narratives end up being used in a wide variety of contexts: academic publications,
blog posts, books, traditional journalism articles, technical documentation,
government reports, grant applications, industry research and commercial products.
Furthermore, a single notebook could be communicated in a number of different
formats (PDF, live demo, web page, slideshow) to different audiences. Today, users
encounter significant pain along this path. In this Computational Narratives focus area,
we will build tools to enable the notebook to be used more easily across different
contexts, formats and audiences.

nbconvert

13

nbconvert is the command line tool that Jupyter offers for converting notebooks to
different formats (currently LaTeX/PDF, HTML, Markdown and reveal.js). We will target
the following areas of work on nbconvert in this grant.

First, we will create an EPUB exporter for nbconvert. Because EPUB is based on
HTML/CSS/]JavaScript, it is a much better format than LaTeX/PDF for representing the
rich content found in notebooks. Most importantly, EPUB is an ideal format for
interfacing with publishers in the academic and technical spaces. EPUB support will
help our ongoing collaborations with O’Reilly Media and Nature. Second, the nbconvert
software needs significant refactoring and improvements to its command line and
programming APIs to enable users and developers to customize it more easily. This
includes improved documentation and examples. Third, we will explore the feasibility
of exporting notebooks to Microsoft Word. This will be done through our ongoing
collaboration with the data, development and machine learning teams at Microsoft,
which is described above.

Element filtering

Notebooks contain code (source code and output) and markdown (narrative) cells.
When a notebook is used across different contexts and audiences, it is useful to filter
what types of content is visible. For example, when a notebook is read by non-technical
users, it is helpful to hide all of the source code, but show the narrative text,
visualizations and widgets. To address these needs, we will create a system that allows
the notebook content to be selectively filtered, based on the intended context and
audience.

First, we will enable cells to be tagged with user selected labels (“homework”,
“testing”, etc.). Users will add labels to cells using an appropriate user interface and the
labels will be stored in the notebook metadata. Second, we will create an interactive
query syntax that allows content to be selectively hidden and shown based on the cell
type, cell labels, widgets, input/output, etc. This query syntax will be integrated into
the live notebook, nbconvert and nbviewer.

Documentation

Documentation is one of the primary ways that users interact with open source
software. Existing documentation for Jupyter and other open source projects is written
as static web pages generated by markup languages such as Markdown. Developers are
forced to manually copy and paste code samples into this format. This leads to
documentation that easily falls out of dates and cannot be tested. For users, these static
web pages are not integrated with the notebook, can’t be searched and most

14

importantly, can’t be run as live code. Furthermore, all of the documentation for each
open source project is hosted on different places on the web.

To address these issues, we will create a notebook based documentation system
for our own and other open source software projects. This documentation system will
allow developers to write documentation as notebooks and package them with their
own project as live code. Upon installation of these packages, users will be able to
browse and search all of the documentation from within the notebook. Most
importantly, users will be able to run the documentation as live code. To test this
approach, we will write our own documentation using this system.

Capstone

As a capstone to this Computational Narratives focus, we will test our deliverables in the
context of collaborations with publishers, both traditional and web-oriented. These
publishers include O’Reilly, Nature, GitHub, BuzzFeed and 538.

Collaboration

Since the Jupyter Notebook was released in 2011, better support for collaborative
workflows has been our users’ most common request. This is for good reason. In our
modern, web-enabled companies, universities, research labs and non-profits, data
science and scientific computing are carried out by distributed teams whose work and
contributions are tightly coupled. For static content, this is enabled by technologies
such as email, video chat, online comment/review systems, GitHub and Google Docs.
Today, the Jupyter notebook has almost no support or these types for synchronous and
asynchronous collaborations, which limits the impact and usefulness of the notebook
in collaboration rich contexts such as education and scientific research.

Real time collaboration

In this grant, we will add real-time collaboration capabilities to the notebook that are
modelled on the abstractions and architecture of Google Drive/Docs. This will allow
multiple users to share notebooks with each other online, and edit those notebooks
together in real time. To this collaborative editing system we will add user presence,
commenting and cloud based document storage.

As described above, this work is extremely technical and will require major
rewrites of significant portions of our architecture. Furthermore, there are significant
security issues to work through. Because of the difficulty and scope of this work, we are
working directly with Google Research to help us design the underlying architectures
and implement them in our software (see above for the details of this collaboration).

15

The initial implementation of these features will rely on open Google APIs (Drive API,
Real Time API), however, we plan on building abstractions and APIs that will allow us
to plug into a number of different collaborative backends (Firebase, etc.).

JupyterHub

The basic Jupyter Notebook is a single user web application that most users install and
run on their own laptop or desktop. JupyterHub is a multiuser version of the notebook
server than can be run on a central server(s) or in the cloud. JupyterHub eases the
installation and deployment of the notebook to large numbers of users and opens the
door for novel collaboration possibilities, However, the version of JupyterHub that
exists today has very limited sharing capabilities. In this grant we will improve the
collaboration capabilities of JupyterHub in the following ways.

First, we will define richer and finer grained sharing semantics that allow users
to share notebooks with other individuals or groups. This will include user interfaces
that make this easy to do across different storage and deployment backends. Second,
we will work to create tools that ease the deployment of JupyterHub in different
contexts. Third, we will allow users of JupyterHub to “publish” notebook to other users
of JupyterHub or the public.

Capstone

The individual tasks in this Collaboration focus area involve creating new, but
semi-separate, collaboration capabilities for the different sub-projects (Jupyter
Notebook, JupyterHub). As a capstone, we will begin to integrate these different
collaboration approaches to create an integrated, ubiquitous system for notebook based
collaboration.

Sustainability

As the scale of Jupyter’s usage and development expands, it is important to create for
us to create a sustainable technical project, community and organization. This focus
area is conceptually different from the above described 3 main technical areas and will
involve an ongoing set of activities throughout the project period.

People
People are the backbone of our sustainability plan. While the project has had over 400

contributors, most of the major work has been done by a few key individuals. Thus, our
first goal is to expand the set of these key contributors.

16

First, we will set up a robust training program that leverages senior project staff
to manage and train new undergraduates, graduate students and postdocs to work on
the project at Cal Poly and UC Berkeley. New data science programs at both of these
universities will be used as the needed source of initial human capital for these efforts.
We have an excellent track record of training students; two of our most senior
Contributors and Steering Council members were previously undergraduate students of
Brian Granger.

Second, we will send these newly trained individuals out into academia and
industry where they can expand our network of collaborators, contributors and
Institutional Partners even further. We know of multiple companies that are currently
interested in hiring project newly trained Contributors and Steering Council members.
To initiate this “sending out” this grant will fund two of our current Steering Council
members (Min Ragan-Kelley and Thomas Kluyver) to move from UC Berkeley to
institutions in Norway and the UK. We plan on working with them to build their own,
independent, European based funding sources in the future. Their move will also create
two new Institutional Partners: Simula Research Lab and the University of
Southampton or Sheffield (which of these two will join is being determined, but one of
them will).

Finally, a key concern of the project, inscribed in a larger societal discussion of
the problem, is improving the diversity of our community. We address it in detail in the
required Appendix.

Events

Jupyter related events will enable us to build a more sustainable community of users,
developers and collaborators.

First, we will continue to have week long developer meetings twice per year.
These meetings bring together 5-15 core developers and designers to review the
project’s progress, discuss major technical and architectural issues and plan the future
roadmap of the project. Because our core developers are geographically distributed,
these in person meetings are critically important for us to build a cohesive developer
community and project.

Second, for the first time, we plan on organizing JupyterCon, an annual
conference to bring together all of Jupyter’s developers, users, collaborators and
Institutional Partners. This conference will be a 2-3 day event in the Bay Area or New
York that has time for talks, coding sprints, brainstorming, etc. As the project grows in
size, JupyterCon will be an important way for us to bring our community together in a
focused event. JupyterCon will also enable Institutional Partners to provide input to the
project; eventually we forsee Insitutional Partners as becoming an advisory board for

17

the project that works alongside the Steering Council. This centralized conference will
also be used to seed other, smaller community organized outreach event in cities
throughout the world (JupyterDays).

Third, we will continue to disseminate the results of our work to an ever wider
range of communities in academia and industry. This will include talks at academic and
industry focused conferences and workshops and the publication of articles about our
work in academic journals.

Year by year output

Our approach to building software

We want to clarify our approach to building software and describe how that relates to
the deliverables of this grant. The approach described here has emerged from our own
experience in building open source software over the last 14 years as well as a careful
study and application of the methods described by Eric Ries in his book, the The Lean
Startup, as well as the books and courses of Steve Blank.

First, for each deliverable, we always begin by creating an Minimum Viable
Product (MVP). The MVP is an initial implementation of that deliverable that provides
the absolute minimal set of features we hypothesize will be useful to our users. The
MVP always has a very limited scope and lacks features present in the final version.

Second, we immediately release the MVP to our users and begin watching how
they respond. Our goal in this phase is to collect as much information as possible to
validate our hypotheses about the deliverable. During this stage, we also identify the
individuals and organizations who are stakeholders and collaborators in building that
particular deliverable.

Third, we then incorporate the information gathered through validation to build
the final version of the deliverable that has the exact set of features required by users.
The final version typically has much larger scope than the MVP and is built with the
collaborators identified in the validation stage.

Given this background, we expect the funding provided in this grant will be
sufficient for us to complete the MVP and validation stages of each deliverable. For some of
the smaller deliverables, we also expect to start building the final versions. However,
we expect the final versions of all deliverables to be out of scope of this grant for two
reasons. First, the validation stage is completely unpredictable. Features are used in
unexpected ways, new groups of users emerge, other developers extend and reuse our
work in innovative ways, and new collaborators and stakeholders emerge. Second, the

18

validation phase typically expands the scope of the deliverable far beyond our original
plans and budget.

However, we want to emphasize that the validated MVPs produced through this
grant’s activities will be highly functional and have a deep impact on our users. To set
the scale appropriately, we consider most of our current software, including the Jupyter
Notebook, to be at the validated MVP stage.

Year-by-year plan of deliverables

The following table details our year-by-year plan of deliverables in the core focus areas
of Interactive Computing, Computational Narratives and Collaboration. The numbers in
the table represent the number of full time staff technical staff working on that
deliverable at UC Berkeley, Cal Poly, Simula Research Lab and the University of
Southampton. This table only includes our eight software engineers and postdocs, as
well as V2 FTE on Y1 for a technical writing consultant. We expect the UI/UX designer,
Project Manager and 2 PIs to work across all deliverables each year.

Deliverable Year 1 Year 2 Year 3
NB as Apps L 0.5 1 1
UI/UX L 1.5 2 2

NB Software Eng. 1 |1

nbconvert | 1 1
Element Filtering 1 | 1 0.5 0.5
Documentation I 1.5 1

Real Time Collab L | 2 2.5 2.5
JupyterHub L 1 1

Measuring effectiveness

We will measure the effectiveness of our work through the following metrics. All target
numbers are three year totals unless otherwise specified.

19

° Number of talks given at conferences and workshops we have never attended
before (target=10).

° Ethnic and gender diversity of active Jupyter developers in our broader
community (target=3 from currently underrepresented groups. This would be a
very significant increase, given our core development team has roughly a dozen
regularly active members).

° Traffic on project web site and web services (nbviewer and tmpnb) (target=4x
current traffic).

° Number of deployments of JupyterHub by 3rd parties in research, education,
industry (target=direct knowledge of 25).

° The number of universities, companies and research labs that adopt the Jupyter
Notebook and related technologies at an institutional level (target=6).

° Institutions and projects that use our building blocks as infrastructure to create
other software and products (target=12).

° The number of books, academic publications, education course materials,

journalism articles that use the notebook as a primary or secondary mechanism
to deliver content (target=100).

° The number of new collaborations with large companies in the data science
space (target=6).

° The number of companies providing funding for the project (target=12
companies).

° The number of new Institutional Partners of the project (target=4)

° The number of undergraduate, graduate and postdoc students that are trained
through the grant activities and placed in related jobs (target=12).

° Number of deliverables for which the MVP and validation stages are completed
(target=all).

° The MVP and validation stages increase the impact, scope and reached users of

our deliverables so significantly that we have to do additional fundraising to
complete final versions.

Budget justification

The main expenses for this grant are for the salaries, travel and supplies for full time
project staff who will work at UC Berkeley, Cal Poly, Simula Research Lab and the
University of Southampton or Sheffield. Because of this, our budget justification is
organized around these staff positions. The amounts allocated for travel are based on
our actual travel numbers over the past two years. For project PIs, this amounts to
approximately 10 week long trips per year and for other project staff this amounts to

20

1-3 week long trips per year. First year supplies are higher to enable us to purchase
computers and monitors for staff.

Project PIs (Dr. Fernando Perez and Dr. Brian Granger). Core activities of the
project PIs include managing and training staff, creating the strategic direction of the
project, building relationships with Institutional Partners and key collaborators, giving
talks at conferences and workshops, fundraising, community building, hiring project
staff, etc. To enable both PIs to focus on Project Jupyter, the budget funds significant
fractions of the PIs’ time. Dr. Perez will lead the UC Berkeley team and bridge the
project with related activities in data science at the Berkeley Institute for Data Science
and Lawrence Berkeley National Laboratory, where he holds a Staff Scientist
appointment. Dr. Brian Granger will lead the team at Cal Poly, where he is an Associate
Professor of Physics and Data Science. This position gives him access to highly
motivated and talented students that can be hired and trained to work on the project.

Existing full time staff (Dr. Min Ragan-Kelley, Dr. Thomas Kluyver, Dr.
Matthias Bussonnier and Jon Frederic). These individuals are core Contributors and
Steering Council members who form the technical backbone of the project; without
their full time work on the project, technical activity would completely grind to a halt.
Dr. Ragan-Kelley will be working as a postdoc at Simula Research Lab. Dr. Kluyver will
be working as a postdoc at the University of Southampton. Dr. Bussonnier will be a
postdoc at UC Berkeley. Mr. Frederic will be a senior software engineer at Cal Poly.

Project Manager. This grant will scale our full time project staff from 6 to 14.
We feel it is critical for us to hire a new full time Project Manager (at UC Berkeley) to
help the PIs manage the increased project scope and technical staff. This role will
enable us to segment the deliverables into smaller pieces that can be tackled in parallel
by more independent teams, while still keeping the project wide vision and approach
consistent.

UX/UI Designer. Significant amounts of our current and proposed work involves
visual and interactive design, as well as frontend web development. We currently have
no designers on the team; this has created a significant bottleneck for us, even with our
current scope. To enable us to tackle the ambitious user interface work of this grant, we
propose to hire a new full time user interface/experience (UI/UX) designer who will
work with the different teams to design, build and test these user interfaces.

Software engineering. The deliverables of this grant will expand the scope,
complexity and effort of the project significantly. The popularity of the project has also
put incredible pressure on our existing developers to give talks at conferences and
support users online. To enable us to tackle these challenges, we propose to hire four
new full time software engineers: two postdocs at UC Berkeley and two software
engineers at Cal Poly.

21

Administrative help. Currently the project PIs have to do all project
administration: filing reimbursements, managing the budget, travel and event
planning, etc. To handle the increased budget and activities of this grant we propose to
hire two new project administrators (full time at Cal Poly and %% time at UC Berkeley).
These administrators will free the PIs, Project Manager and technical staff to focus on
the deliverable of the grant. The full time administrator at Cal Poly will also be the lead
on planning various project events: core developer meetings, JupyterCon and
JupyterDays.

Consultants. During the first year we will hire two consultants. First, we will
hire a web/design firm to overhaul our entire web presence, which has seen nearly zero
development in years, is a poor representation of the project and lacks key usability
aspects. Second, we will hire a technical writer to go over our entire body of
documentation and help us triage, rewrite, clarify and organize it. Beyond the first year,
our full time technical staff will take over the maintenance of these resources, however,
their current state is so bad that we need extra help catching up.

Students. This grant will fund 4 summer undergraduate students each year at
Cal Poly. These students are a critical part of our long term sustainability plan. Our goal
is to train these students to work on Project Jupyter in different capacities (software
engineering, technical writing, design, etc.) and then send them out to jobs at current
and future Institutional Partners. Dr. Granger’s position at Cal Poly gives him access to
talented students in the new Data Science and Computer Science degree programs.

JupyterCon/Days. We plan on organizing a new Jupyter focused conference
each year (JupyterCon). This will be a 2-3 day event that will bring together
contributors, steering council members, institutional partners, third party developers
and users. Over the long term, we plan on this conference becoming self supporting
through industry sponsorship and registration fees. The grant budget includes seed
money we know will be required to get this conference off the ground. Some of this
seed money will also be used to seed single day Jupyter events that are organized by the
larger community (JupyterDays).

Core Developer Workshops. Over the past two years, we have bought our core
project Contributors together twice a year for a week long in person meeting. During
these meetings, we review the project’s progress and set a roadmap for the following
six months. Given the distributed nature of our project, these in person meetings are
absolutely critical in building our team and setting the strategic vision of the project.
The grant budget includes funding for our core Contributors to attend these events.

Other sources of support

22

Through NumFOCUS, Project Jupyter currently has funding from Microsoft, which
donated $100,000 in 2013 to NumFOCUS for general project work. This money has been
used to hire Steering Council member (Jonathan Frederic) as an independent contractor
working at Cal Poly with PI Brian Granger.

The Institutional Partner, Rackspace, is donating significant cloud hosting
resources and the time of Kyle Kelley, a Rackspace employee and Steering Council
member.

The PIs of this grant, through the Institutional Partners UC Berkeley and Cal
Poly have the following Jupyter related funding:

e A $1.15M grant from the Alfred P. Sloan Foundation during 2013 and 2014 for
the creation of nbconvert, interactive widgets and a prototype of JupyterHub. We
expect this grant’s funds to run out in March 2015.

e A $100,000 grant from Google in the fall of 2014 to UC Berkeley to hire Steering
Council member (Matthias Bussonnier) as a postdoc to begin integrating the
Jupyter Notebook and Google Drive.

e A $100,000 grant from the Simons Foundation to F. Perez at UC Berkeley, that
supports the integration of the Jupyter Notebook into a system for data sharing
in neuroimaging. This grant is in collaboration with the Stanford Center for
Cognitive and Neurobiological Imaging, led by prof. Brian Wandell.

We also plan to raise additional funding through UC Berkeley and Cal Poly in the
coming years. This additional funding will be used primarily to fund new work not
funded by this grant. Examples include:

e Areplacement or extension to Markdown syntax that handles the full
complexity of academic and book publishing.

e Features found in traditional Interactive Development Environments (IDEs)
(IntelliJ, Microsoft Visual Studio and Eclipse) such as an interactive debugger,
variable inspector, refactoring tools, etc.

e Technologies that enable the Jupyter Notebook and JupyterHub to scale to
internet sized user groups.

e Developing tmpnb and nbviewer into full blown platforms for sharing, indexing,
reviewing/commenting and searching notebook based content.

e Robust security for the Jupyter Notebook that addresses deployments on the
open internet and in highly secure settings.

e A federated architecture for live Jupyter Notebooks in the cloud that spans
multiple cloud vendors (Amazon, Microsoft, Rackspace) and geographic regions.

e Internationalization of the Jupyter Notebook, JupyterHub and Documentation.

23

e Accessibility support across all our software.

e Improvements to our parallel computing framework. There is significant interest
in this area from federal agencies (NIH, NSF and DOE) in this area. Problems
such as the use of our tools in High Performance Computing (parallel
supercomputers) environments, or in domain-specific contexts like genome
sequence analysis, present challenges that go far beyond the scope of the current
proposal. We have already been approached by multiple scientists interested in
pushing forward with ideas based on our architecture in directions like these and
others.

e Implementations of interactive widgets for languages other than Python, such as
R.

We have already received preliminary interest from the following companies in funding
these and other initiatives: Google, Microsoft, Bloomberg, Continuum, Quantopian,
West Health, IBM. In the coming 3 years, much of the time and effort of the project
leaders and PIs of this grant (Fernando Perez and Brian Granger) will focus on this
fundraising work. Some of the industry money that we raise will also be used to build
final versions of the deliverables of this grant that end up with a larger scope than
currently envisioned.

24

